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Abstract: We study renormalization-group flows by deforming a class of conformal sigma-

models. We consider overall scale factor perturbation of Einstein spaces as well as more

general anisotropic deformations of three-spheres. At leading order in α′, renormalization-

group equations turn out to be Ricci flows. In the three-sphere background, the latter

is the Halphen system, which is exactly solvable in terms of modular forms. We also

analyze time-dependent deformations of these systems supplemented with an extra time

coordinate and time-dependent dilaton. In some regimes time evolution is identified with

renormalization-group flow and time coordinate can appear as Liouville field. The resulting

space-time interpretation is that of a homogeneous isotropic Friedmann-Robertson-Walker

universe in axion-dilaton cosmology. We find as general behaviour the superposition of a

big-bang (polynomial) expansion with a finite number of oscillations at early times. Any

initial anisotropy disappears during the evolution.
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1. Introduction

Finding string backgrounds with cosmological interpretation is a challenging problem that

has led to many developments, either in genuine string theory or in string-inspired mod-

els. One possible way to investigate string cosmology is by promoting a Euclidean three-

dimensional static string solution to a Minkowskian four-dimensional time-dependent one.

To some extent, this is borrowed from general relativity, where e.g. a three-sphere can

be promoted to a Friedmann-Robertson-Walker (frw) universe. The latter is a four-

dimensional space-time which has spherical spatial section of time-dependent radius. How-

ever, string theory is more constraint than general relativity and such a promotion is a

delicate issue, which does not admit a systematic treatment: the string equations of motion

involve many fields (metric, dilaton and antisymmetric tensors) and the four-dimensional

universe must necessarily be accompanied by an internal, compact space that saturates the

central charge without spoiling the perturbative (in α′) nature of the solution. It is not

surprising therefore that the emergence of e.g. de Sitter solution in the context of strings is

still unclear, whereas this universe is the archetype of a cosmological background in general

relativity.
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One can be more concrete and give a specific example to illustrate the above difficulties.

A three-sphere background appears in string theory as the target space of a Wess-Zumino-

Witten (wzw) model. This sigma-model is an exact rational conformal field theory. Com-

pared to the principal model, it contains a Wess-Zumino term, which is topological and

gives rise to a Dirac monopole quantization (put differently, the Kalb-Ramond three-form

is classified according to the third homotopy group of the group manifold, which in the

compact case is always π3(G) = Z). The radius is therefore quantized and this creates an

obstruction when trying to let it vary continuously while keeping conformal invariance.

A possible way out would be to abandon conformal invariance. The perturbed sigma-

model at hand is no longer an infra-red fixed point and various parameters (such as the

radius of S3 in the above example) now are running with the renormalization-group (rg)

energy scale. It is tempting therefore, to interpret the rg scale as a cosmological time

and the various (new) fixed points as steady or final states of the cosmological evolution.

Such identification is however questionable because time is expected to appear as a genuine

dimension of the target space of a critical string and nothing a priori guarantees that its

evolution is the rg-flow of a non-critical string with one dimension less. Indeed, string

backgrounds satisfy second-order equations while rg-flow equations are first-order. Hence,

there is no reason to trust the above approach generically, although the dissipative nature

of the dilaton may help in some circumstances to transform second-order into first-order

equations. In some other examples, off criticality can generate a Liouville mode that may

eventually play the role of the time direction, putting thereby on a firmer ground the

cosmological interpretation of the rg evolution (see for instance refs. [1 – 5]). Despite these

reservations, the method remains useful in order to acquire a wider perspective of the rg

landscape around a given spatial string solution.1

Instead of abandoning criticality, one can try to keep it or restore it. Starting from a

conformal sigma-model with spatial target space, we add an extra time direction (which

requires adjusting the internal manifold) and let some parameters explicitly depend on it.

Time evolution of these parameters is dictated by the critical string equations of motion.

This procedure may go under the name of dynamical promotion of the rg-flow although,

depending on the parameter and the regime, this evolution may or may not be the one

obtained in the absence of time, by following the rg-flow. An extreme situation correspond

to the case where the parameter is a coupling constant associated with a truly marginal

deformation of the original conformal sigma-model. Such a coupling does not run under

the rg whereas it can acquire in general a non-trivial time dependence.

In the present note, we analyze both the rg-flow properties and its dynamical promo-

tion in the following framework. We start with a conformal sigma-model with space-like

d-dimensional target space. We assume the metric be Einstein with constant curvature,

while criticality is achieved with a Kalb-Ramond field and no dilaton. The off-critical ex-

cursion is realized by switching on an overall scale factor c for the metric that does not

affect the antisymmetric tensor. We perform the rg analysis and show, at lowest order in

1A renormalization-group approach to cosmology has been put forward by other authors [6]. That

perspective is however slightly different from ours.
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α′, that no other fixed point exists away from c = 1.

We further investigate the case of the three-sphere. There, in a mini-superspace ap-

proximation, we consider a three-parameter perturbation written in terms of left-invariant

currents describing a squashed three-sphere sustained by a Kalb-Ramond field. The rg-

flow equations turn out to be equivalent to the Halphen system that we can explicitly solve

in terms of Eisenstein series. The modular properties of the latter allow to demonstrate

that, no matter the initial conditions, the system flows towards the round sphere. Again

no other fixed point exists away from the SU(2) wzw model.

It is remarkable that in all cases at hand — global scale factor or anisotropic pertur-

bations, the rg-flow is in fact a Ricci flow driven by a connection with torsion, due to the

Kalb-Rammond background. Ricci flows have attracted much attention recently [7], not

only in mathematics but also in the physics literature, in relation to various issues of string

theory such as tachyon condensation or time dependence (see e.g. [8 – 10]).

We investigate time-dependent solutions by considering a family of backgrounds ex-

pressed as the warped product of the original d-dimensional manifold with an extra time

direction, while keeping the B field unperturbed.2 The one-loop Weyl-invariance equations

are satisfied for the full (d + 1)-dimensional space-time provided a background dilaton is

also switched on in the time direction. In the case of the three-sphere, we generalize the

time warping by implementing time dependence in all three parameters that were studied

in the rg approach — anisotropic warping.

The kind of solutions we obtain when only the overall scale factor is made time-

dependent (simple warping) is by construction of the Friedmann-Robertson-Walker type.

The system exhibits a friction behaviour. Whenever the latter dominates in the solution,

we recover the rg-flow of the d-dimensional sigma-model studied previously. In this regime,

the off-critical string generates a Liouville mode which becomes the “missing time” with a

background charge that is identified with the friction coefficient. Warping coincides then

with Liouville dressing. As a consequence, the dilaton of the full (d+1)-dimensional target

space is linear in this regime.

In general, the solution turns out to describe a universe undergoing a power-law expan-

sion (big-bang solution) superimposed with a damped oscillation governed by the dilaton

and the axion. This kind of cosmologies was considered e.g. in [11, 12].

The case of more anisotropic warping that is studied for the sphere can be summarized

as follows: the equations of motion are found to be a generalization of the Halphen system

with a friction term. The solution exhibits the oscillating behaviour met previously. In

particular, in the linearized limit, around the wzw point, all three parameters oscillate in

phase and the solution remains qualitatively the same.

The paper is organized as follows. The rg-flow analysis is performed in section 2 first

for the general case with perturbation of the overall factor and then for the three-sphere

with more parameters for rg motion. In section 3 we introduce a time coordinate, in

the manner described previously and take the various coupling constants perturbed so far

2This ensures that in the case of compact group manifolds, the quantization condition appearing in

the WZW point is satisfied despite of the warping and is no longer an obstruction for finding new critical

solutions.
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to be time-dependent. This allows us to write down the equations of motion which are

a generalization of the equations for the rg-flow and take the form of the motion of a

point particle in presence of a friction term. The system is non linear and we were not

able to find a closed solution, but both numerical and asymptotic analyzes are possible.

They show that the universe we describe grows as a superposition of a big-bang expansion

and a damped oscillation, and eventually converges to a linear dilaton solution [13, 14].

Section 4 is actually devoted to the proper cosmological analysis of the solution, performed

by moving to the Einstein frame. A summary follows in section 5.

2. The renormalization-group-flow approach

2.1 The behaviour of the overall scale in general situations

We would like to study the rg-flow for the coupling of the metric in a system without

dilaton, i.e. for the sigma model

L(c) =
1

2
(cgµν + Bµν) ∂Xµ∂̄Xν , (2.1)

where gµν is a d-dimensional Euclidean metric and c and λ are constants. The antisymmet-

ric tensor is tuned so that for c = 1 the model is conformal3 and for simplicity we require

gµν to be Einstein with constant curvature (that is always true e.g. for group manifolds,

but this case is not exhaustive). Geometrically this means that H = dB is the torsion that

parallelizes the Riemannian metric gµν , and no dilaton is required for conformal invariance.

Two-dimensional sigma models are perturbatively renormalizable. We will analyze

the evolution of a certain class of deformations with special emphasis to their target-space

interpretation, in the mini-superspace approximation. We will perform this analysis at one

loop although it is in principle tractable at higher order.

Following [15 – 18] we define the connection

Γ−µ
νρ =

{
µ

νρ

}
− 1

2
Hµ

νρ (2.2)

and the corresponding Riemann tensor

R−µ
νρσ =

(
1 − 1

c2

)
Rµ

νρσ. (2.3)

In a dimensional-regularization scheme the one-loop counterterm reads:

δL(1) =
µε

4πε
R−

µν∂Xµ∂̄Xν (2.4)

=
µε

4πε

R

d

(
1 − 1

c2

)
gµν∂Xµ∂̄Xν , (2.5)

where R is the Ricci scalar for gµν . In particular, if we start with an SU(2) wzw model at

level k, we have d = 3 and R = 6/k.

3One should not confuse c with the central charge.
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From the above expressions, we can determine the behaviour of c with respect to the

scale µ, captured in the corresponding beta-function, β(c) = dc/d log µ. We find:

β(c) =
R

2πd

(
1 − 1

c2

)
, (2.6)

which exhibits an infra-red fixed point at c = 1 that we already know. It is possible to go

beyond one-loop and resum higher-order corrections. In the particular case of wzw models,

where the target space is a group manifold, this amounts to a finite renormalization of the

radius, or equivalently, a shift of the level of the affine algebra k → k + g∗, where g∗ is the

dual Coxeter number of the algebra.

It is interesting to remark that given the form of the one-loop counterterm, the evo-

lution equations take the form of a Ricci flow where the effect of the B field is taken into

account by the connection Γ−. In fact the equations above are equivalent to

dcgµν

d log µ
=

1

2π
R−

µν . (2.7)

As usual one should pay attention to the direction of the flow and it is hence useful to

define an rg time variable t̃ = − log µ so that gµν(t̃) describes the evolution of the system

going towards the infra-red.

In order to compare the result with what we will find in the following, we introduce

σ(t̃) =
1

2
log c(t̃). (2.8)

Then the evolution of σ(t̃) going toward the infra-red gives:

dσ

dt̃
= − R

4πd
e−2σ(t̃)

(
1 − e−4σ(t̃)

)
≡ − 1

4π
V ′(σ(t̃)) (2.9)

with V (σ) given in eq. (3.14). Equation (2.9) admits the implicit solution

t̃ = −2πd

R

(
e2σ(t̃) − arg tanh

(
e2σ(t̃)

))
+ cst. (2.10)

To summarize, in d dimensions and for constant-curvature metrics, the running of the

one-parameter deformation that maintains the normalization for the topological term is a

Ricci flow, and it does not produce any new non-trivial fixed points.

2.2 Generic perturbations of S3: the Halphen system

The case of wzw is of special interest. The underlying algebraic structure allows to switch

on more general perturbations, while it remains possible to analyze their simultaneous

evolution under the rg flow. Although the issue of metric perturbation has attracted

much attention in the past (e.g. for O(3) or O(4) sigma models [19, 20]), we will here

investigate a class of perturbations, for which the full analysis of the rg flow can also be

carried out in the presence of a Kalb-Ramond field.

– 5 –
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Let us for the moment consider a wzw model on a generic compact semi-simple group

G. Its action is as in eq. (2.1) with c = 1. The corresponding algebra g has generators

{Tα } and structure constants fαβ
γ . The standard Killing form is4

ds2 = δαβJα ⊗ Jβ, (2.11)

where Jα are the left currents Jα =
√

k tr(Tαg−1dg) for g ∈ G. We will consider a deformed

wzw model with metric

ds2 = gαβJα ⊗ Jβ =
∑

α

γα(µ)Jα ⊗ Jα (2.12)

(µ is the rg-scale) and the standard B field, which is fixed, being a topological term. It is

convenient to go to the vielbein of the currents so that in particular the metric reads:

(gαβ) =




γ1(µ)

γ2(µ)
. . .

γn(µ)




, (2.13)

where n = dim G and γα(µ) arbitrary positive functions.

The rg-flow equations are here

dgαβ

d log µ
=

1

2π

(
Rαβ − 1

4
H2

αβ

)
=

1

2π
R−

αβ , (2.14)

where Rαβ are the components of the Ricci tensor, H = dB and H2
αβ = HαγδH

γδ
β . We

observe that the rg-flow equations for the perturbation pattern at hand are again governed

by a Ricci flow with torsion, as in section 2.1.

Although the full analysis is tractable for any compact group G, we will here focus on

the SU(2), where, as we will see below, the flow equations can be solved explicitly. The

metric (2.13) has now only three entries: γ1(µ), γ2(µ), γ3(µ). Using (A.9), we obtain the

following Ricci tensor:

(Rαβ) =
1

2




γ2
1−(γ2−γ3)2

γ2γ3

γ2
2−(γ1−γ3)2

γ1γ3

γ2
3−(γ1−γ2)2

γ1γ2


 , (2.15)

while the Kalb-Ramond term reads:

(
H2

αβ

)
= 2




1
γ2γ3

1
γ3γ1

1
γ1γ2


 . (2.16)

4We will absorb the level k of the algebra in the currents. Therefore, in terms of the structure constants,

H = fαβγJα
∧ Jβ

∧ Jγ , where the first indices in f are lowered with the Killing metric (H is the standard

field for the unperturbed wzw model). Its square is contracted with the new metric though. Explicitly,

H2
αβ = fαγδfβγ′δ′g

γγ′

gδδ′ .

– 6 –
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We introduce as before an rg-time pointing towards the infra-red,

dt̃ = − 1

2πγ1(µ)γ2(µ)γ3(µ)
d log µ, (2.17)

where we have also reabsorbed the product of the three γα’s. These are positive functions

and such a rescaling is therefore harmless since it does not spoil the monotonic evolution of

t̃ with µ (t̃ increases from minus infinity to plus infinity when flowing to the infra-red from

infinite to zero µ). Putting everything together one obtains the following rg equations:




2
γ̇1

γ1
= (γ2 − γ3)

2 − γ2
1 + 1,

2
γ̇2

γ2
= (γ3 − γ1)

2 − γ2
2 + 1,

2
γ̇3

γ3
= (γ1 − γ2)

2 − γ2
3 + 1,

(2.18)

where dot denotes the derivative with respect to t̃.

The evolution of Ricci flows on general homogeneous or locally homogeneous spaces

has been studied from various perspectives (see e.g. [7, 21]). In the absence of torsion, the

last constant term in (2.18) is missing and the flow converges towards the round sphere, of

vanishing radius though. The presence of torsion does not alter this behaviour but affects

the radius of the sphere which stabilizes to
√

k because all γα’s now converge to one.5 This

non-trivial infra-red fixed point corresponds to the SU(2)k wzw model.

The above results on the convergence of the flow are based on asymptotic analysis.

However, as already advertised, the Ricci-flow equations (2.18) can be solved explicitly in

the case at hand. Indeed, setting

t̃ = log(T + T0), (2.19)

which amounts in identifying T ∈ [0,+∞[ with a monotonic function of the inverse energy

scale 1/µ, and

Ω1 =
γ2γ3

T + T0
, Ω2 =

γ3γ1

T + T0
, Ω3 =

γ1γ2

T + T0
, (2.20)

equations (2.18) are recast as:




Ω̇1 = Ω2Ω3 − Ω1 (Ω2 + Ω3) ,

Ω̇2 = Ω3Ω1 − Ω2 (Ω3 + Ω1) ,

Ω̇3 = Ω1Ω2 − Ω3 (Ω1 + Ω2) ,

(2.21)

where the dot now denotes the derivative with respect to the new time6 T . The arbitrary

constant T0 does not play any significant role.

5Note that the differential systems under consideration are parabolic, hence not invariant under time

reversal.
6In the case of a system without torsion one would obtain the same equations by defining Ω1 = γ2 γ3

and cyclic and keeping the same time variable t̃.
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This is the celebrated Halphen system that was studied in the 19th century, also

called Darboux-Halphen because the equations were written by Darboux on the analysis

of triply orthogonal surfaces [22] and solved three years later by Halphen [23, 24]. It

has appeared since then in several instances in physics, as e.g. in the search for self-dual

or anti-self-dual reductions in four-dimensional Euclidean gravity (Bianchi IX class with

SU(2) isometry) [25] or in the scattering of SU(2)-Yang-Mills monopoles [26]. The function

Y = −2 (Ω1 + Ω2 + Ω3) satisfies

˙̈Y = 2Y Ÿ − 3Ẏ 2, (2.22)

known as the Chazy equation [27, 28]. Note that integrable ordinary differential equations

like Chazy’s or Halphen’s turn out to be systematically related to self-dual Yang-Mills

reductions.

The Halphen and the Chazy equations possess remarkable properties. If ωα(z) provide

a solution to the Halphen system for generic z ∈ C (the dot stands then for d/dz), then so

do

ω̃α(z) =
1

(cz + d)2
ωα

(
az+b
cz+d

)
+

c

cz + d
, (2.23)

with
(

a b
c d

)
∈ PSL(2, C). Similarly, if y(z) is a solution of the Chazy equation, so is

ỹ(z) =
1

(cz + d)2
y

(
az+b
cz+d

)
− 6c

cz + d
. (2.24)

A class of solutions are expressed as [29]

ωα(z) = −1

2

d

dz
log Eα(z), (2.25)

where Eα form a triplet of modular forms of weight two for Γ(2) ⊂ PSL(2, Z) (see e.g. [30,

31]), transforming thereby as

z → −1

z
:




E1

E2

E3


 → z2




0 1 0

1 0 0

0 0 −1







E1

E2

E3


 (2.26)

and

z → z + 1 :




E1

E2

E3


 → −




1 0 0

0 1 0

0 0 1







E1

E2

E3


 . (2.27)

The class of solutions under consideration does not capture situations where some ωα’s are

equal. In our physical set-up, this would correspond to deformations of the three-sphere

that preserve some extra isometries, whereas all-different ωα’s restrict the isometry group

to SU(2), strictly. We will discuss this possibility towards the end of the present section,

but the following should already be stressed: eqs. (2.21) imply that if Ωα = Ωβ then

Ω̇α = Ω̇β and therefore Ωα and Ωβ never cross unless they are equal at any time. For the

moment, we will focus on the situation where Ω1 6= Ω2 6= Ω3. We can express the Eα as

E1 =
dλ/dz

λ
, E2 =

dλ/dz

λ − 1
, E3 =

dλ/dz

λ(λ − 1)
, (2.28)

– 8 –
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and recast the Halphen system in terms of the Schwartz equation for λ:

d3λ/dz3

dλ/dz
− 3

2

(
d2λ/dz2

dλ/dz

)2

= −1

2

(
1

λ2
+

1

(λ − 1)2
− 1

λ(λ − 1)

)(
dλ

dz

)2

. (2.29)

The elliptic modular function

λ =
ϑ4

2

ϑ4
3

(2.30)

is a celebrated solution for this equation (see appendix B for a reminder on Jacobi theta

functions). This provides a particular solution of the Halphen system in terms of the three

Γ(2) weight-two Eisenstein series. Correspondingly,

y = 12
d

dz
log η, (2.31)

where η is the Dedekind function.

For our present purposes, we must focus on real solutions Ωα for real time T (z = iT ).

These are obtained as

Ωα(T ) = iωα(iT ) = −1

2

d

dT
log Eα(iT ) (2.32)

and

Y (T ) = iy(iT ) =
d

dT
log E1 E2 E3. (2.33)

The modular properties of the functions under consideration set stringent constraints be-

tween the asymptotics of the solution and its initial conditions: large-T and small-T regimes

are related by T ↔ 1/T . Assuming Ω0
α ≡ Ωα(0) finite and using (2.26) and (2.32), the

asymptotic behaviour (T → ∞) is found to be universally

Ωα =
1

T
+ subleading. (2.34)

This provides an elegant proof of the universality of generic SU(2) Ricci flows in the presence

of torsion towards the corresponding wzw infra-red fixed point.

One can further assume Ω0
α finite and positive. This is natural for describing the

initial deformation of a three-sphere and sufficient to show that all Ωα remain positive at

any later time. Indeed, suppose that 0 < Ω0
1 < Ω0

2 < Ω0
3 and that Ω1 has reached at

time t1 the value Ω1
1 = 0, while Ω1

2,Ω
1
3 > 0. From eqs. (2.21) we conclude that at time

t1, Ω̇1
2 = Ω̇1

3 = −Ω1
2 Ω1

3 < 0 and Ω̇1
1 = Ω1

2 Ω1
3 > 0. This latter inequality implies that Ω1

vanishes at t1 while it is increasing, passing therefore from negative to positive values. This

could only happen if Ω0
1 were negative, which contradicts the original assumption. However,

if indeed Ω0
1 < 0 and Ω0

2,Ω
0
3 > 0, there is a time t1 where Ω1 becomes positive and remains

positive together with Ω2 and Ω3 until they reach the asymptotic region, where they all

satisfy (2.34). The generic behaviour of a positive-initial-value solution is given in figure 1.

Although the Halphen system can be solved, its deep nature makes it difficult to

establish the correspondence between a given set of initial conditions and the modular

forms Eα (see eqs. (2.25) or (2.32)) necessary to provide the actual solution. Moreover, it
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Figure 1: A generic solution of the Halphen system for positive Ω0

1
< Ω0

2
< Ω0

3
.

is important to stress that solutions exist, for which the initial conditions Ω0
α are not all

positive and not even finite. Hence, for these solutions, (2.34) does not hold. This happens

e.g. for the particular solution given in eqs. (2.28) and (2.30), where T = 0 is a simple pole

with positive (unit) residue for Ω2,Ω3 and a double pole with negative residue (−π/2) for

Ω1. As a consequence, Ω1 is negative and increases, at large T , exponentially towards zero,

while Ω3 is positive and decreases exponentially towards zero; Ω2 is positive and decreases

exponentially towards π/2. Solutions with negative Ω’s were considered in refs. [26, 32] for

the description of the configuration manifold of two SU(2) monopoles.

The existence of poles is generic for all solutions of the Halphen system. For solutions

corresponding to a set of finite and different initial values, these poles are pushed behind

T = 0. This is related to the following general property: Halphen’s solutions possess a

natural movable boundary [29]. They exist in a domain of C, where they are holomorphic

and single valued, and this domain has a boundary that contains a dense set of essential

singularities. The precise location of this boundary depends on the initial conditions.

We would like finally to mention that the Halphen system admits also solutions which

are not based on elliptic functions. These solutions have power-like dependence on time:




Ω1 = 1
T+A + C

(T+A)2
,

Ω2 = Ω3 = 1
T+A .

(2.35)

They are actually the most general solutions with Ω2 = Ω3 and describe axisymmetric

deformations of the three-sphere,7 namely deformations preserving an SU(2)×U(1) . The

constants (A,C) are arbitrary and determined by the initial conditions. This class is closed

under PSL(2, C) transformations. Indeed, using (2.23), we learn that under T → 1/T ,

(A,C) → (1/A,−C/A2), while for T → T +1, (A,C) → (A+1, C). Regularity requires Ω0
2,3 ≡

1/A > 0, which ensures that the pole of Ωα is located at T < 0. Furthermore, the asymptotic

behaviour is again universal as in eq. (2.34). No new fixed point appears therefore in this

7Notice that the equations at hand being first order, setting Ω0
2 = Ω0

3 guarantees that Ω2 = Ω3 at any

subsequent time.
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case either. The rg flow of perturbations of this type, namely with γ1 6= γ2 = γ3, was

analyzed in [20], without torsion though. When translated into the language of self-dual

four-dimensional Euclidean metrics with SU(2) isometry, solutions (2.35) correspond to the

general Taub-NUT family, including Eguchi-Hanson metrics [25].

The case of Ω1 = Ω2 = Ω3 corresponds to fully isotropic deformations studied in the

previous section. In this case, the solution is unique: Ωα = 1/T+A.

To summarize and conclude the present analysis, solutions of the Halphen system fall

in three classes: Ω1 6= Ω2 6= Ω3, Ω1 6= Ω2 = Ω3 and Ω1 = Ω2 = Ω3. The corresponding

three-manifolds, target spaces of the sigma-model, are homogeneous with isometry group

SU(2), SU(2) × U(1) and SU(2) × SU(2), respectively. This captures all possible isometry

groups for a general three-sphere, the latter, most symmetric case corresponding to the

usual round sphere. The Ricci flow describing the renormalization of the sigma-model

leads unavoidably to the round sphere, which is therefore the unique perturbative infra-red

fixed point, found at one loop.

3. Space-time solutions

3.1 Equations of motion for the dilaton and the scale factor

As advertised in the introduction, our aim is now to describe a generalization of the previous

construction obtained by introducing an extra time dimension and treating the coupling

as a time-dependent field. This clearly bears many resemblances with the usual Liouville

dressing of [1, 33 – 35]. In other words, we would like to write down the Weyl-invariance

equations for the following sigma model:

S =
1

2

∫
d2z

[
−∂t∂̄t + (c(t)gµν + Bµν) ∂Xµ∂̄Xν + RΦ(t)

]
, (3.1)

where, g and B are background fields solving the d-dimensional equations of motion. Mod-

ulo the time-dependent dilaton, the system in eq. (2.1) appears thus as a description of a

constant-time slice.

Let us start by rewriting the d + 1 dimensional metric in the form of a Weyl rescaling,

ḡmn = e2σ(t)

(
−e−2σ(t) 0

0 gµν

)
= e2σ(t)gmn, (3.2)

where c(t) = e2σ(t), as before. This means in particular that the Ricci tensor can be written

as

Rmn = Rmn − gmnK l
l − (d − 1) Kmn, (3.3)

where Kmn is defined as

K n
m = −∂mσgnl∂lσ + gnl (∂m∂lσ − Γp

ml∂pσ) +
1

2
glp∂lσ∂pσδ n

m , (3.4)

Kmn = gnlK
l

m . (3.5)
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After some algebra one finds

Rtt = −d
(
σ̈(t) + σ̇2(t)

)
, (3.6a)

Rtµ = 0, (3.6b)

Rµν = Rµν + ḡµν

(
dσ̇2(t) + σ̈(t)

)
. (3.6c)

The (d + 1)-dimensional metric is not Einstein, so we expect the presence of a time-

dependent dilaton. The equations of motion read:





βΦ = −1
2¤̄Φ + ∇̄mΦ∇̄mΦ − 1

24HmnpH̄
mnp = d+cI−25

6 ,

βG = Rmn − 1
4H̄2

mn + 2∇̄m∇̄nΦ = 0,

βB = −1
2∇̄mHmnp + ∂mΦHmnp = 0.

(3.7)

Several remarks are in order here.

• As already pointed out, the action in eq. (3.1) does not describe by itself a critical

string theory. An internal conformal field theory of central charge cI must be super-

imposed to the above sigma-model. Requiring that we are in the perturbative regime

with respect to α′, we expect: (i) the model in eq. (3.1) to have a central charge of

the order of d + 1 and (ii) the internal cft with cI ≈ 25 − d to have a geometrical

interpretation with a (25−d)-dimensional compact target space (we refer here to the

bosonic string).

• If the scale factor were chosen to be kept constant and equal to its critical value c = 1,

the natural solution to the above equations would be the linear dilaton Φ = ±qt. This

solution is actually an exact cft with central charge 1 − 3q2 < 1 (the minus sign

is due to the time-like direction). The central charge cd of the d-dimensional sigma

model (decoupled in this case) depends on the geometry (the curvature) of the target

space. For some spherical-like geometry, one expects cd . d and therefore the internal

cft must have cI & 25 − d. This imposes a locally hyperbolic internal target space

that can be e.g. a quotient of a hyperbolic plane H25−d by some discrete subgroup.

The βΦ = const. equation can be seen as a consequence of the Bianchi identities and

the βB = 0 and βG = 0 equations. Explicitly it reads:

βΦ = −1

2
Φ̈ + Φ̇

(
Φ̇ − d

2
σ̇

)
− 1

6
e−6σR =

d + cI − 25

6
(3.8)

The βB = 0 condition is satisfied by our choice of Kalb-Ramond field (see section 2.1) and

a time-dependent dilaton Φ = Φ(t). So, let us consider the remaining βG = 0 equation.

First of all we separate the time component (all terms retain a block-matrix structure):





Rtt + 2∂t∂tΦ(t) = −d
(
σ̈(t) + σ̇2(t)

)
+ 2Φ̈(t) = 0,

Rµν

(
1 − e−4σ(t)

)
+ ḡµν

(
dσ̇2(t) + σ̈(t) − 2σ̇(t)Φ̇(t)

)
= 0,

(3.9)
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where we used the equations of motion for the σ = 0 conformal system

Rµν =
1

4
H2

µν . (3.10)

Taking the trace with ḡmn one obtains the system:





d
(
σ̈(t) + σ̇2(t)

)
− 2Φ̈(t) = 0,

Re−2σ(t)
(
1 − e−4σ(t)

)
+ d

(
dσ̇2(t) + σ̈(t) − 2σ̇(t)Φ̇(t)

)
= 0.

(3.11)

Introducing

Q(t) = −Φ̇(t) +
d

2
σ̇(t), (3.12)

the equations become:

{
Q̇(t) = −d

2 σ̇2(t),

σ̈(t) = −R
d e−2σ(t)

(
1 − e−4σ(t)

)
− 2σ̇(t)Q(t).

(3.13)

The second equation has precisely the structure of the equation of motion of a point

particle in a potential

V (σ) =
R

6d
e−6σ

(
1 − 3e4σ

)
+ cst., (3.14)

in the presence of a time-dependent friction coefficient Q(t). In the Q → ∞ limit we recover

the same equation as in eq. (2.9) with the same potential V (σ) when identifying the energy

scale µ for the running, off-shell (i.e. non-conformal), d-dimensional system with the time

direction according to

log µ = −2πt

Q̄
. (3.15)

This was to be expected since what we find is the usual link between the rg-flow equations

and the conformal condition typical of a Liouville dressing (see e.g [1, 2, 33, 35]). This

identification holds, however, only in the large-Q regime.

A useful reformulation of the equations is obtained by multiplying the second equation

by σ̇ and introducing the energy E = σ̇2/2:

{
Q̇(t) = −dE(t),

E(t) = −V (σ(t)) + 2
dQ2(t),

(3.16)

which in turn allows us to write down an equation for Q as a function of σ:

d

dσ
Q(σ) = −d

√
Q(σ)2

d
− V (σ)

2
. (3.17)

3.2 Linearization

The system (3.13) can be solved numerically and typical results for large Q(0) and small

Q(0) are shown in figure 2. Since we describe a dissipative motion, the system relaxes to

equilibrium with or without fluctuations.
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(a) Small Q(0) (b) Large Q(0)

Figure 2: Typical behaviour for σ(t) in the non-linear system. For (a) small and (b) large (positive)

initial values of Q(t) (numerical integration with (a) (Q(0), σ(0), σ̇(0)) = (0.5, 0.1, 0.1)) and (b)

(Q(0), σ(0), σ̇(0)) = (10, 0.1, 0.1)).

The solutions we found are in principle only valid at first order in α′ so one may wonder

about their stability. Actually, it turns out that if the spatial part is supersymmetric (which

is the case if the model in eq. (2.1) is of the Wess-Zumino-Witten type), then so is the

spacetime in eq. (3.2). This is immediate once one notices that the Weyl tensor for ḡ is the

same as for the Cartesian product with line element ds2 = −dt2 +gµνdxµdxν and therefore

vanishes identically.

Around the conformal point. A further step can be made via linearization. To study

the behaviour in a neighbourhood of the σ = 0 conformal point we introduce

Σ(t) = σ̇(t) (3.18)

and derive the first-order system




Q̇(t) = −d
2Σ2(t),

σ̇(t) = Σ(t),

Σ̇(t) = −V ′(σ(t)) − 2Σ(t)Q(t),

(3.19)

which has a fixed point for (Q(t), σ(t),Σ(t)) =
(
Q̄, 0, 0

)
, Q̄ being a constant. Around this

point the asymptotic behaviour is described by




Q̇(t) = 0,

σ̇(t) = Σ(t),

Σ̇(t) = −V ′′(0)σ(t) − 2Q̄Σ(t) = −4R
d σ(t) − 2Q̄Σ(t).

(3.20)

Q decouples (and remains constant) and the only non-trivial remaining equation of motion

is
d2σ(t)

dt2
= −4R

d
σ(t) − 2Q̄

dσ(t)

dt
, (3.21)
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which can be integrated to give

σ(t) = C1 exp

[
−

(
Q̄ +

√
Q̄2 − 4R

d

)
t

]
+ C2 exp

[
−

(
Q̄ −

√
Q̄2 − 4R

d

)
t

]
, (3.22a)

Φ(t) = Φ0 +
dC1

2
exp

[
−

(
Q̄ +

√
Q̄2 − 4R

d

)
t

]
+

dC2

2
exp

[
−

(
Q̄ −

√
Q̄2 − 4R

d

)
t

]
− Q̄t,

(3.22b)

where C1 and C2 are integration constants.

For positive Q̄ the solution converges to σ = 0 with or without oscillations depending

on whether Q̄2 ≶ 4R/d, which clarifies the meaning of “large” and “small” Q(0) in figure 2.

In terms of σ(t) and Φ(t), this limit solution is

σ(t) −−−→
t→∞

0 Φ(t) ∼ Φ0 − Q̄t, (3.23)

which is the conformal model in eq. (2.1) plus a linear dilaton.

Large σ. In the large-σ limit, the solution goes to flat space. To study its behaviour let

us consider the system {
Q̇(t) = −d

(
−V (σ) + 2

dQ(t)2
)
,

σ̈(t) = −V ′(σ(t)) − 2σ̇(t)Q(t).
(3.24)

In the large-σ limit V (σ) → C and V ′(σ) → 0 so it reduces to

{
Q̇(t) = −d

(
−C + 2

dQ(t)2
)
,

σ̈(t) = −2σ̇(t)Q(t),
(3.25)

which can be solved analytically:

Q(t) =

√
Cd

2
tanh

(
2
√

Cdt + C1

)
, (3.26)

σ(t) = C3 + C2 arctan

(
sinhC1 + cosh C1 tanh

(√
Cd

2
t

))
(3.27)

Φ(t) = Φ0 −
1

2
√

2
log

(
cosh

(
2
√

Cdt + C1

))
+

d

2
σ(t) (3.28)

where C1, C2, C3 are integration constants. As expected, for large t, both Q(t) and σ(t)

asymptotically converge to constant values and the background is flat with a linear dilaton.

3.3 The meaning of Q̄

The parameter Q̄ is interpreted as the background charge that drives the dilaton, in the

regime where the latter is linear with time. This parameter dictates the behaviour of

the solution around the fixed point in many ways. Apart from discriminating between

exponentially decreasing and oscillating solutions, it also measures the consistency of the

perturbative string approach. In fact positive values of Q̄ correspond to a dilaton evolving
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towards large negative values, i.e. towards the perturbative regime. On the other hand,

negative values of Q̄ would lead to diverging solutions in which we would lose control over

the approximations we made. It is worth to remark that in the non-linear dynamics Q(t)

is not allowed to change its sign if we make the hypothesis of unicity of the solution. In

fact changing sign would require to cross the Q = 0, σ = const. line corresponding to the

Euclidean conformal model.

A final remark regards the consistency of the approximation for the dynamics one

obtains from the rg-flow equation (2.9), corresponding to a Q → ∞ limit. The linearized

system (3.20) provides a justification for such limit: in fact the time scale for Q(t) is

comparably larger than the time scale for σ(t) — to the point that the former decouples

around the fixed point. For this reason it can be taken as a constant (fixed by the initial

conditions) if we just concentrate on the evolution of the warp factor σ(t).

3.4 The anisotropic deformations of the three-sphere

We will now study the anisotropic deformation of the SU(2) model (see section 2.2) when

an extra time dimension is added to the system while the parameters γν (eq. (2.13)) and the

dilaton Φ are allowed to depend on it. Explicitly, the full four-dimensional, time-dependent

metric under consideration is

ds2 = −dt2 +
3∑

ν=1

γν(t)JνJν = −dt2 + k
( (

γ2(t) cos2 φ + γ1(t) sin2 φ
)
dθ2+

+
(
γ1(t) cos2 θ cos2 φ + γ3(t) sin2 θ + γ2(t) cos2 θ sin2 φ

)
dψ2+

+ γ3(t)dφ2 + 2γ3(t) sin θ dφdψ + 2 (γ1(t) − γ2(t)) cos θ cos φ sin φdθ dψ
)
. (3.29)

We introduce again the functions σν(t) as

γν(t) = e2σν(t), (3.30)

and find the following equations of motion:




2Φ̈(t) =

3∑

ν=1

(
σ̈ν(t) + σν(t)

2
)
,

σ̈1(t) =
R

3

(
1 − e4σ1(t) +

(
e2σ2(t) − e2σ3(t)

)2
) 3∏

ν=1

e−2σν(t) − σ̇1(t)

(
−2Φ̇(t) +

3∑

ν=1

σν(t)

)
,

(3.31)

plus permutations, where R = 6/k is the curvature of the undeformed three-sphere. Here,

it is natural to define

Q(t) = −Φ̇(t) +
1

2

3∑

ν=1

σ̇ν(t) (3.32)

and recast the system in the form




Q̇(t) = −1

2

3∑

ν=1

σ̇2
ν(t),

σ̈1(t) =
R

3

(
1 − e4σ1(t) +

(
e2σ2(t) − e2σ3(t)

)2
) 3∏

ν=1

e−2σν (t) − 2σ̇1(t)Q(t),

(3.33)
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plus permutations.

The analysis of eqs. (3.33) can be performed in analogy with the system we obtained

above, when considering only the overall breathing mode. We first observe that given the

rg-flow equations8

dσν(µ)

d log µ
= βν(σ(µ)), (3.34)

we obtain those for the time-dependent system as

d2σν(t)

dt2
= βν(σ(t)) − 2Q(t)

dσν(t)

dt
(3.35)

where Q(t) is the charge that naturally generalizes the one we found before. From these we

conclude that the structure is again that of a dissipative system with the time-dependent

friction coefficient given by the charge. We can further proceed by linearization around the

SU(2) wzw fixed point. This goes along the same lines as in the isotropic case and gives

{
Q̇(t) = 0,

σ̈ν(t) = −4R
d σν(t) − 2Q̄σ̇ν(t), ν = 1, 2, 3.

(3.36)

The charge Q(t) decouples and remains constant Q(t) = Q(0) = Q̄ while the three modes

become independent from each other and obey the same differential equation. This means

that they oscillate in phase with each other and eventually converge to the fixed point

corresponding to SU(2)k wzw plus a linear dilaton.

All the considerations we made for the breathing mode then extend directly to this

anisotropic generalization. The net effect of the time dependence is therefore to wash out

the anisotropy, as was expected from the pure rg-flow analysis of section 2.2.

4. Cosmological interpretation

The type of backgrounds we are studying are time-dependent and as such can be of cos-

mological interest. For this reason, since there is a non-trivial dilaton, one should move

to the Einstein frame (as opposed to the string frame we have been using thus far). The

metric takes the form

g̃mn = e−Φ(t)/2ḡmn, (4.1)

and after a coordinate change

τ(t) =

∫ t

0
e−Φ(t′)/4dt′, (4.2)

it reduces to the same warped product form as in eq. (3.2):

d̃s2 = g̃mndxmdxn = −dτ2 + e2σ(t)−Φ(t)/2
∣∣∣
t=t(τ)

gµνdxµdxν = −dτ2 + a(τ)gµνdxµdxν (4.3)

8Notice that βν(σ) = βν(γ)/2γν .
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which has Hubble parameter:

H(τ) =
d

dτ
log(a(τ)) = eΦ(t)/4

(
2σ̇(t) − Φ̇(t)

2

)∣∣∣∣∣
t=t(τ)

. (4.4)

Cosmologically interesting solutions are obtained when d = 3. In this case the Kalb-

Ramond field H[3] is proportional to the volume form on g. This implies that H2
µν ∝ gµν

and then eq. (3.10) reduces to

Rµν = 2Λgµν , (4.5)

i.e. gµν is the metric of an Einstein three-manifold. The simplest case is a three-sphere for

which we get a typical example of frw space-time of the kind studied in [36 – 39]. As such it

describes the time evolution of a homogeneous and isotropic9 space-time, or more generally

of a space-time with the target-space symmetries of the conformal theory in eq. (2.1).

Some intuition about the time evolution can be developed if we take the linearized

system in eq. (3.20).

Linear Dilaton. In fact, as remarked above, if we consider the large t limit, the solution

asymptotically approaches a linear dilaton background (which was already studied from

this point of view in [14]):

σ(t) −−−→
t→∞

0 Q(t) = Q̄ Φ(t) ∼ −Q̄t, (4.6)

hence one can easily verify that the metric in the Einstein frame is asymptotically

d̃s2 ∼ −dτ2 + Q̄2τ2gµνdxµdxν , (4.7)

which corresponds to an expanding universe with Hubble parameter

H(τ) =
2

τ
(4.8)

and curvature

R̃ ∼ R + Q̄2d (d − 1)

Q̄2τ2
. (4.9)

Exponentially decreasing σ. A similar result with a polynomial expansion is found if

we consider an exponential decrease for σ(t), or better for c(t) (in the linear limit c(t) − 1

obeys the same equations as σ(t)) i.e. if we are in the large-Q̄ regime. After a redefinition

of the variables we can write:

c(t) = e−αt + 1. (4.10)

It is easy to check that in general10

τ(t) =

∫
c(t)−d/16e1/4

R

Q(t′)dt′dt, (4.11)

9We will discuss in this section the isotropic situation only.
10Since c(t) > 0 by construction, the relation τ = τ (t) is always invertible.
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and in this linearized approximation this becomes

τ(t) =

∫ (
e−t + 1

)−d/16
eQ̄t/4dt. (4.12)

Although this integral can be solved analytically:

τ(u) =
16

d + 4Q̄

(
1 +

1

u

)−d/16

uQ̄/4 (1 + u)d/16
2F1

(
d

16
,
d + 4Q̄

16
;
d + 4Q̄

16
+ 1,−u

)
,

(4.13)

where u = et and 2F1 is an hypergeometric function.11 It is better to consider the asymp-

totic behaviour. For u → ∞ one finds that τ(u) and the warp factor a(u) go as:

τ(u) ∼
τ→∞

4

Q̄
uQ̄/4, a(u) ∼

τ→∞
uQ̄/2, (4.16)

and consistently with the results above for the linear dilaton case (which is precisely the

large-u limit):

a(τ) ∼
τ→∞

τ2; (4.17)

similarly for small u:

τ(u) ∼
τ→0

16

d + 4Q̄
u(d+4Q̄)/16, a(u) ∼

τ→0
ud/4+2+Q̄/2 (4.18)

and then

a(τ) ∼
τ→0

τ4+8(4−Q̄)/(d+4Q̄). (4.19)

Since we have a power-law expansion at both limits, the Hubble parameter goes as H(τ) ∝
1/τ and more precisely is asymptotically given by:

H(τ) ∼
τ→∞

2

τ
H(τ) ∼

τ→0

2

τ

(
1 +

16 + d

d + 4Q̄

)
. (4.20)

Note that this behaviour precisely measures the effect of a finite value for Q̄ and in

fact for Q̄ → ∞ we recover again H(τ) ∼ 2/τ . To summarize, we get again a polynomially

expanding universe (a so-called big-bang solution).

Damped oscillation regime. The small-Q̄ regime is more difficult to be studied ana-

lytically. Nevertheless we can make some qualitative comments on the overall behaviour

of the solution.

11The hypergeometric function 2F1 is defined as follows:

2F1(a, b; c, z) =
∞

X

k=0

(a)k (b)k

(c)k

zk

k!
, (4.14)

where (a)k is the Pochhammer symbol

(a)k =
Γ(a + k)

Γ(a)
. (4.15)
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First of all we can redefine the variables so to recast eqs. (3.22) in the form

σ(t) = Ae−Q̄t cos(ωt) (4.21a)

Φ(t) = Φ0 +
Ad

2
e−Q̄t cos(ωt) − Q̄t (4.21b)

where A is a constant and ω2 =
∣∣Q̄2 − 4R/d

∣∣. The warp factor and the Hubble parameter

then read

a(τ) = e2σ(t)−Φ(t)/2
∣∣∣
t=t(τ)

= exp

[
Ae−Q̄t cos(ωt)

(
2 − d

4

)
− Φ0

2
+

Q̄t

2

]∣∣∣∣
t=t(τ)

, (4.22)

H(τ) = eΦ(t)/4

(
2σ̇(t) − Φ̇(t)

2

)∣∣∣∣∣
t=t(τ)

= exp

[
Φ0

4
+

Ad

8
e−Q̄t cos(ωt) − Q̄t

4

]
×

×
(
−Ae−Q̄t

(
Q̄ cos(ωt) + ω sin(ωt)

) (
2 − d

4

)
+

Q̄

2

)∣∣∣∣
t=t(τ)

,

(4.23)

where τ(t) is defined by

τ(t) =

∫ t

0
e−Φ(t′)/4dt′ =

∫ t

0
exp

[
−Φ0

4
− Ad

8
e−Q̄t′ cos(ωt′) +

Q̄t′

4

]
dt′. (4.24)

The Einstein frame time variable τ(t) is given by the integral of a positive function of t.

This means that it is monotonically increasing and the relation τ = τ(t) is invertible. In

turn the qualitative behaviour of the functions a = a(τ) and H = H(τ) can be understood

by studying their behaviours as functions of the string frame time t. In particular H(τ)

is an oscillating function and has a zero for each zero of the function
(
2σ̇(t) − Φ̇(t)/2

)
.

The maximum number N̄ of such zeros can be estimated in the following way. If we write

explicitly the equation 2σ̇ − Φ̇/2 = 0 we obtain

Q̄ = 2Ae−Q̄t
(
Q̄ cos(ωt) + ω sin(ωt)

) (
2 − d

4

)
, (4.25)

so, we are looking for the intersections of the line $(t) = Q̄ with the function $(t) =

2Ae−Q̄t
(
Q̄ cos(ωt) + ω sin(ωt)

) (
2 − d

4

)
. The latter is bounded by

$(t) = 2Ae−Q̄t
√

Q̄2 + ω2

∣∣∣∣2 − d

4

∣∣∣∣ (4.26)

and then intersections are only possible for t < t̄ where t̄ is given by

t̄ =
1

Q̄
log

A
√

Q̄2 + ω2 |8 − d|
2Q̄

. (4.27)

In the (0, t̄) interval, the
(
Q̄ cos(ωt) + ω sin(ωt)

)
term can oscillate ωt̄/ (2π) times and then

the number of solutions for eq. (4.25) is at most

n < N̄ =

⌈
ωt̄

π

⌉
=

⌈
ω

Q̄π
log

A
√

Q̄2 + ω2 |8 − d|
2Q̄

⌉
. (4.28)

The overall behaviour for the warp factor a(τ) is of that of a power-law expansion super-

imposed with n < N̄ oscillations. The Hubble parameter after n oscillations goes to zero

for large τ as H(τ) ∼
τ→∞

2/τ . Typical behaviours for a(τ) and H(τ) are shown in figure 3.
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(a) Warp factor a(τ ) (b) Hubble parameter H(τ )

Figure 3: Typical behaviour for the warping factor and Hubble parameter in the small-Q̄ regime.

Numerical solution with parameters A = 1, Q̄ = 1.2, ω = 10, d = 3.

5. Summary

Finding viable time-dependent solutions with cosmological interest is one of the open prob-

lems in string theory. In this note we have presented family of such solutions, derived as

deformations of a conformal model, leading to a generalization of frw universe undergo-

ing a big bang-like expansion, superposed with damped oscillations. In these backgrounds

the time dependence comes from a Liouville-type mechanism in which flowing from the

conformal point is seen as the effect of a time-dependent field. The rg-flow equations on

constant-time slices then become an approximation for the Weyl-invariance equations and

the off-shell dynamics is interpreted as the on-shell dynamics with one extra dimension.

As already stressed, this behaviour is not generic and the identification of the rg-flow with

time evolution is not valid in any regime.

The constraints imposed by the rational nature of the underlying compact model es-

sentially fix the type of deformations one can consider and naturally lead to an isotropic

frw background whose behaviour is due to the presence of an axion (dual to the Kalb-

Ramond field) and an oscillating dilaton. Anisotropic extensions of frw solution are also

considered but time evolution smoothes the initial anisotropy and the system relaxes to a

symmetric phase.

A common feature of all situations considered here is that the rg equations at lowest

order in α′ always describe a Ricci flow with torsion. In the case of the three-sphere with

anisotropic perturbation, the Ricci-flow equations are identical to the Halphen system, and

are thereby integrable by using modular forms. More general perturbations exist, which

are compatible with the mini-superspace approximation (see [20]) but a systematic analysis

of all those is beyond the scope of this work.

It stems from the overall analysis performed in the present framework that in a quite

universal manner, sooner or later, time evolution is identified with an rg flow, which is

a Ricci flow. Time becomes thus a two-dimensional scale, the dilaton being the interplay
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between target space and worldsheet. Thurston’s geometrization conjecture is then at

work. It tells us that the string target space will universally converge towards a collection

of Einstein spaces, whenever these are available, enhancing therefore the symmetry. This

behaviour is independent of the initial conditions.

Clearly, this reasoning is valid under the assumption that the initial space is locally

homogeneous. Exact time-dependent string backgrounds with non-homogeneous spaces

exist [40, 41], and there time evolution does not lead to Einstein spaces. Consistently with

the above picture, in these cases, time evolution never identifies with an rg flow because

it is rather related to a marginal deformation.

The latter observations are puzzling additions to the already mysterious origin of time

in string theory, along the lines of thought of A. Polyakov.
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A. The Ricci tensor for the deformed group manifold

In order to calculate Rαβ, we need to use some notions in group manifold geometry. Let

{ θ̂α } be a set of one-forms on a manifold M satisfying the commutation relations

[θ̂β, θ̂γ ] = fα
βγ θ̂α (A.1)

as it is the case when θ̂α are the Maurer-Cartan one-forms for a Lie algebra and fα
βγ

the corresponding structure constants. We wish to study the geometry of the Riemann

manifold M endowed with the metric

g = gαβ θ̂α ⊗ θ̂β. (A.2)

In general such a metric has a symmetry G×G′ where G is the group corresponding to the

structure constants fα
βγ and G′ ⊂ G. The maximally symmetric case, in which G′ = G is

obtained when g is G-invariant, i.e. when it satisfies

fα
βγgαδ + fα

δγgαβ = 0. (A.3)

For compact groups this condition is fulfilled by the Killing metric.
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The connection one-forms ωα
β are uniquely determined by the compatibility condition

and the vanishing of the torsion. Respectively:

dgαβ − ωγ
αgγβ − ωγ

βgγα = 0, (A.4)

dθ̂α + ωα
β ∧ θ̂β = Tα = 0. (A.5)

As it is shown in [42], if gαβ is constant, the solution to the system can be put in the form

ωα
β = −Dα

βγ θ̂γ (A.6)

where Dα
βγ = 1/2fα

βγ −Kα
βγ and Kα

βγ is a tensor (symmetric in the lower indices) given

by:

Kα
βγ =

1

2
gακf δ

κβgγδ +
1

2
gακf δ

κγgβδ . (A.7)

The Riemann tensor and the corresponding Ricci tensor now read:

Rα
βγδ = Dα

βκfκ
γδ + Dα

κγDκ
βδ − Dα

κδD
κ
βγ (A.8)

Rβδ = Dα
βκfκ

αδ − Dα
κδD

κ
βα. (A.9)

B. The Jacobi functions

We take the standard conventions for the Jacobi functions:

ϑ2(z) =
∑

p∈Z

q
1
2(p+ 1

2)
2

, (B.1)

ϑ3(z) =
∑

p∈Z

q
p2

2 , (B.2)

ϑ4(z) =
∑

p∈Z

(−1)p q
p2

2 , (B.3)

where q = exp 2iπz. With these conventions

λ =
ϑ4

2

ϑ4
3

, 1 − λ =
ϑ4

4

ϑ4
3

(B.4)

and

2η3 = ϑ2 ϑ3 ϑ4 (B.5)

with

η(z) = q
1
24

∞∏

n=1

(1 − qn) (B.6)

the Dedekind function. The non-holomorphic function

Ê(z) =
12

iπ

d log η

dz
− 3

πIm z
(B.7)

is modular covariant of degree 2.The holomorphic part of the latter, which is not modular-

covariant, is the function y (divided by iπ) in (2.31).
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